

Principes de la mesure RMN

Magnétisation \Rightarrow Quantification de spin

Excitation \Rightarrow Impulsion radiofréquence des noyaux de l'échantillon

Réception \Rightarrow Temps nécessaire à l'échantillon pour retourner à l'état d'équilibre

Retraitement \Rightarrow Accès à l'information RMN par transformé de Fourier = accès à une information structurale

	P et	t μ <mark>sont q</mark>	uantifiés (ei	n unité ħ)			
$P = \sqrt{I(I+1)} \frac{h}{2\pi} \Rightarrow \mu = \gamma \sqrt{I(I+1)} \frac{h}{2\pi}$							
	Z	A	Ι	exemples de noyaux			
	pair	pair	0	¹² ₆ C, ¹⁶ ₈ O			
	impair	impair	1/2, 3/2, 5/2	${}^{1}_{1}\text{H}, {}^{15}_{7}\text{N}, {}^{19}_{9}\text{F}, {}^{31}_{15}\text{P}$]		
	pair	impair	1/2, 3/2, 5/2	¹³ ₆ C, ¹⁷ ₈ O			
	impair	pair	1, 2, 3	$^{2}_{1}$ H, $^{14}_{7}$ N			

L'équivalence chimique : définition

+2 noyaux sont chimiquement équivalents s'ils ont même environnement électronique donc le même déplacement chimique δ

•2 noyaux sont chimiquement équivalents s'ils s'échangent par opération de symétrie propre à la molécule

•2 noyaux sont chimiquement équivalents s'ils s'échangent par opération de symétrie dite dynamique

RMN ¹³C : Avantages

📧 Faible sensibilité du noyau :

Simplification de l'interprétation des spectres de RMN carbone 13, les noyaux étant dilués il y a peu de probabilité de trouvés deux 13C voisins donc pas de couplage spin-spin homonucléaires 13C

Seamme spectrale large : δ ¹³C ≈ 250 ppm

Amélioration de la résolution

Renseignement spectrale direct :

Sur le squelette carboné de la molécule L'état d'hybridation des atomes de la molécule Les sites réactifs de la molécule La dynamique moléculaire

EXPERIMENT	£2	E,		MECHANISM
1. HOMONUCLEAR 2D J-RESOLVED	δ_{iii}	чнн		[™] J _{HH} (n > 2)
<i>ق</i> ر 2. COSY	δ _н , ⊴нн	9 ^H 7HH	>cc<	ⁿ J _{HH} (n = 2.3)
3. LONG-RANGE COSY	δ _{н-Лнн}	δ _H .J.m	H H H >C	"J _{HH} (n≥3)
4. HOMONUCLEAR RELAY	⁶ н. <u>Ј</u> нн	δ _н . <u>Ј</u> ин	H++++++ 	<u>∩</u> _ _{HH} (n=2.3)
5. NOESY	δ _{н. <u>J</u>нн}	õ _{н .} Цин	>cc<	n.O.e. (≃(.r <mark>-6</mark>)
6. HETERONUCLEAR δ-CORRELATION (CSCM)	δ _c	бн. <u>Ј</u> нн		дси
7. LONG-RANGE CSCM (COLOC)	δ _C	δ _н ,днн	>c <	⁹ сн (n>1)
8. HETERONUCLEAR RELAY	δ _C	åн. <u>1</u> нн		^{_0} ປ _{HH} (n = 2,3); ¹ ປ _C
9. HOESY	δ _C	δ _н , днн.	xc	n.O.e (=f.r ^{−6})
		0.0		